DRAM Memory In High-Speed Digital Designs

Presented by:

Micron –

The Worlds Memory Expert & Agilent Partner

©2012 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

June 6, 2013

Agenda

- Introduction
- Micron overview
- Choosing a memory in high-speed designs
- Micron Memory portfolio and segments
- DRAM volume drivers
- Evolution of DDR, introducing DDR4
- General DRAM design considerations
 - General layout and termination
 - SSO Simultaneous Switching outputs
 - RPD Return Path Discontinuities
 - ISI Intersymbol Interference
 - Crosstalk
 - Vref
 - Pathlength, Cin and Rtt

Micron is the world's **memory expert**

DRAM NAND NOR

Micron

June 6, 2013

©2012 Micron Technology, Inc. | 3

Why is Memory important in High-Speed Digital designs?

• Applications demand specific memory features - Memory now plays a vital role in system performance

• Speed? Bandwidth? Power? Latency? Density?

• Memory is no longer just commoditized & standardized -Making the right memory decisions is critical

• SDR, DDR 1 / 2 / 3(3L) / 4, HMC?

Format (component or module type)?

Price, availability & quality?

Micron supplies the right Memory.....

DRAM Families

SDRAM DDR DDR2 DDR3(3L) DDR4 RLDRAM[®] Mobile LPDRAM PSRAM/ CellularRAM HMC

Solid State Drives

Client SSD Enterprise SATA Enterprise SAS Enterprise PCIe DRAM Modules

FBDIMM RDIMM VLP RDIMM VLP UDIMM UDIMM SODIMM SORDIMM Mini-DIMM VLP Mini-DIMM LRDIMM NVDIMM

Phase Change Memory

Serial PCM Parallel PCM NAND Flash TLC, MLC, SLC Serial NAND Enterprise NAND

Managed NAND

MCP eMMC[™] Embedded USB

NOR Flash Parallel NOR

Serial NOR

Bare Die Multiple technologie

Micron

... for every Application.

June 6, 2013

DDR2/3(3L)/4 SDRAM Volume Drivers

- Volume Drivers
 - DDR2 800MT/s (400MHz CLK), 1Gb and 2Gb Backwards compatible with 400/533/667 speeds
 - DDR3L 1600MT/s (800MHz CLK), 2Gb and 4Gb Backwards compatible with 800/1066/1333 speeds
 - DDR4 2133MT/s (1066MHz CLK), 4Gb
 Backwards compatible with 1600/1866 speeds
- Power (IDD7/IPP7)
 - DDR2 396mW (50nm, 2Gb, 800MT/s)
 - DDR3L 339mW
 - (30nm, 4Gb, 1866MT/s)
 - DDR4 247mW
- V (30nm, 4Gb, 1866MT/s)

DDR2/DDR3(3L)/DDR4 Feature Highlight

(see background for full summary)

Features/Options	DDR2	DDR3(3L)	DDR4		
Voltage (core, /IO)	1.8V	1.5V	1.2V		
Vref Inputs	1 - DQs/CMD/ADDR	2 - DQs and CMD/ADDR	1 -CMD/ADDR		
VREFDQ Calibration	none	none	Supported/Required		
^t CK _{base} - DLL enabled	125MHz to 400MHz	300MHz to 800MHz	625MHz to 1.6GHz		
Data Rate – Mb/s	400/533/667/800 plus1066	800 /1066/1333/1600 plus1866, 2133	1600/1866/2133 /2400/ 2667/3200		
DQ Bus	SSTL18	SSTL15	POD12		
ODT Modes	Nominal, Dynamic	Nominal, Dynamic	Nominal, Dynamic, Park		
MultiPurpose Register	None	1 Defined, 3 RFU	3 Defined, 1 RFU		
VPP Supply	none	none	2.5V		
Bank Group	none	none	four		
Data Bus Write CRC	none	none	supported		
Data Bus Inversion (DBI)	none	none	supported		
Connectivity Test Mode	none	none	supported		
Micron	6/6/2013	Micron Confidential	©2012 Micron Technology, Inc. 8		

Self Refresh (IDD6 with ASR, LPASR) Micron – Rs parts

Micron

June 6, 2013

Micron Confidential ©2012 Micron Technology, Inc.

9

DDR2/3(3L)/4 Implementation

DRAM Appnotes on www.micron.com

For DDR3 SDRAM (22)

Title & Description	Secure	ID#	Updated	Туре
A Micron/Engicam Case Study: When Versatility and Durability Matter Most: (PDF 1.29 MB)			02/2013	Case Study
Industrial and Multi-Market Applications Flyer: (PDF 454.13 KB)Our extensive and stable portfolio of IMM- focused memory solutions empower technology developments in automotive, industrial, medical, manufacturing, and other multimarket segments.			02/2013	Product Flyer
• Why DRAM for Ultrathins: (PDF 64.92 KB)Micron's DRAM portfolio is the industry's broadest and includes every type and form factor used in today's ultrathin and Ultrabook designs.			02/2013	Product Flyer
Micron Compatibility Guide for Xilinx FPGAs: (PDF 119.3 KB)See which Micron memory comes validated on Xilinx platforms.				Product Flyer
DDR3 Point-to-Point Design Support: (PDF 620.19 KB)DDR3 is an evolutionary transition from DDR2.				
Error Correction Code in SoC FPGA-Based Memory Systems: (PDF 361.92 KB)This presentation will examine the potential sources and implications of soft errors and explain an error detection and correction method implemented Altera and Micron to make embedded systems more resilient to these types of soft errors.			••••	• • • • • • • • • • • • • • • • •
DDR3L SDRAM System-Power Calculator: (XLSM 197.81 KB)				

©2012 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

June 6, 2013

General Layout Concerns

DLL added

- Clock jitter increasingly important as speeds go up Reduces data eye out by 2x the amount of jitter in
- Avoid crossing splits in the power plane
- Low pass VREF filtering on controller helps
- Minimize Vref Noise
- Minimize ISI
- Minimize Crosstalk

Guidelines

"Near Perfect" Data-Eye

Jitter=1ps

Unadjusted, Non-terminated Data-Eye

Terminated Data-Eye

Micron

Signal Integrity Review

- Importance of transmission line theory Today's clock rates are too fast to ignore
- Matched impedance line is important for good signaling Mismatched impedance lines result in reflections
 Termination schemes are used to reduce / eliminate reflections
- Good power bussing is paramount to reducing SSO
 SSO reduce voltage and timing margins
- Decoupling Capacitors need and requirements

- Signal Integrity Analysis is paramount to developing costeffective high-speed memory systems
 - Develop timing budget for proof of concept
 - Use models to simulate
 - Board skews are important and should account for
 - ISI, crosstalk, Vref noise, path length matching, Cin and R
 mismatch employ industry practices and assumptions
 - Model vias too
 - Eliminate RPDs (return path discontinuities)
 - Minimize SSO affects

Difficult to model

Simultaneous Switching Outputs (SSO)

- Timing and noise issues generated due to RAPID changes in voltage and current caused by MULTIPLE circuits switching simultaneously in the same direction
- Problems caused by SSO:
 - False triggers due to power/ground bounce
 - Reduced timing margin due to SSO induced skew
 - Reduced voltage margin due to power/ground noise
 - Slew rate variation

Good power bussing is paramount to reducing SSO

$$\Delta V = \left(L \cdot \frac{dI}{dt}\right)$$

- Reduce L (power delivery effective inductance)
 - Use planes for power and ground distribution
 - Proper routing of power and ground traces to devices
 - Proper use of decoupling capacitance
 Locate as close as possible to the component pins
- Reduce dI/dt (switching current slew rate)
 - Use the slowest drive edge that will work
 - Use reduced drive strength instead of full drive where possible

- RPDs induce board noise and are difficult to model
 - Splits/holes in reference planes
 - Connector discontinuities
 - Layer changes
- Avoid RPDs if at all possible
 - Avoid crossing holes/splits in reference plane
 - Route signals so they reference the proper domain
 - Add power/ground vias to board
 Especially in dense layer-change areas
 - Place decoupling capacitors near connectors

Split in return path

- Intersymbol interference (ISI)
 - Occurs when data is random
 - Clocks do not have ISI
 - Multiple bits on the bus at the same time
 Bus can't settle from bit #1 before bit #2, etc.
 - Signal edges jitter due to previous bit's energy still on the bus
 - Ringing due to impedance mismatches
 - Low pass structures can cause ISI

Minimize ISI

- Optimize layout
- Keep board/DIMM impedances matched
 - Drive impedance should be same as Zo of transmission line
- Terminate nets
 - Termination values should be the same as Zo of transmission line
- Select high-quality connector

Matched to board/DIMM impedance

Low mutual coupling

Crosstalk

 Coupling on board, package, and connector from other signals, including RPDs

Inductive coupling is typically stronger than capacitive coupling

 When aggressors fire at same time as victim (e.g. data-todata coupling):

Victim edge speeds up or slows down, causing jitter

When aggressors do not fire at same time as victim (e.g. data-to-command/address coupling):

Noise couples onto victim at time of aggressor switching

Minimize Crosstalk

- Keep bits that switch on same "clock" edge routed together
 Route data bits next to data bits; never next to CMD/ADDR bits
- Isolate sensitive bits (strobes)

If need be, route next to signals that rarely switch

 Separate traces by at least two to three {preferred} conductor widths (more accurately, one would define by trace pitch and height above reference plane)

Example: 5 mil trace located 5 mils from a reference plane should have a 15 mil gap to its nearest neighbors to minimize crosstalk

- Minimize Crosstalk (cont)
 - Choose a high-quality connector
 - Run traces as stripline (as oppose to microstrip)
 Not at the cost of additional vias
 - Maintain good references for signals and their return paths
 - Avoid return-path discontinuities (RPD's)
 - Keep driver, BD Zo, and ODT selections well matched

Vref Noise

- Induces strobe to data skews and reduces voltage margins
- Power/ground plane noise
- Crosstalk
- Minimize Vref Noise
 - Use widest trace practical to route
 - From chip to decoupling capacitor
 - Use large spacing between Vref and neighboring traces

- DDR2 and DDR4 have single VREF input pin
- DDR3(3L) has 2 VREF pins VREFCA and VREFDQ
 - When the DQs are driving data there is a lot of noise injection onto VREF

The DRAM DQ bus is not capturing data when the DQ pins are driving

 However, the ADDR/CMD buses may latch inputs when the DRAM DQ outputs are driving

Noise by DQs driving could adversely affect the ADDR/CMD data

 By separating these VREF busses, the VREF for ADDR/CMD can be kept quieter

- DDR3(3L): VREFCA and VREFDQ can have a common source supply but should be separately routed and decoupled at the DRAM
 - Place one decoupling capacitor per DRAM input
 Use 0.1 uF and or 0.01 uF
 - Keep length from decoupling capacitor to the DRAM ball short
 - Use a wide trace
 - Use the same reference plane as the related signals
 For VREFDQ use the DQ buss reference plane
 For VREFCA use the command and address bus reference plane

- Path length Mismatch
 - Path length differences between strobe and data bits
 Also between clock and command/address/control
 - Any mismatch adds strobe-to-data skew
 Check controller, most have adjustment tools to mitigate mismatching
- Minimize Path length Mismatch
 - Balance the mismatch allowed

Large mismatches results in easier layout rules but reduce timing margin in timing budgets

Minimal mismatches results in harder layout rules but have minimal impact on timing budgets

Micron

- Cin Mismatch
 - Differing input capacitances on receiver pins
 - Adds skew to input timings
- RTT Mismatch
 - Termination resistors not at nominal value
 - Internal ODT on Data pins have smaller variation than on DDR2

They are calibrated (so is DRAM's Ron)

 External termination resistor variation must be accounted for Consider one-percent resistors

- High-speed signals must maintain a solid reference plane
 - Reference plane may be either VDD or ground
 - For DDR3 UDIMM systems, the DQ busses are referenced to ground while the ADDR/CMD and clock are referenced to VDD
 - All signals may be referenced to ground if the layout allows
- Best signaling is obtained when a constant reference plane is maintained
 - If this is not possible try to make the transitions near decoupling capacitors

QUESTIONS?

Develop Timing Budgets

Example of a DDR3 Write Timing budget for 2 slots

REV I									
Write	RS = 15	DDR3-							
		800 1066		1333					
Element	Skew Component	Setup	Hold	Setup	Hold	Setup	Hold	Units	Comments
Clock	Data/Strobe chip PLL jitter	45	45	45	45	45	45	ps	System measured
	DRAM tJITper	50	50	45	45	40	40	ps	DRAM Spec
	Clock skew	0	0	0	0	5	5	ps	derate back out what DRAM tests for, i.e. spec limit
Transmitter	Memory Controller Skew	267	267	209	209	177	177	ps	Assume similar to DRAM, used DRAM's
Interconnect *Controller uses uncoupled package model, some increase can be expected pending Controller model used; probably in the 15ps to 30ps region									
									1 victim (1010), 4 aggressors (PRBS); Different termnation scheme for 800
	DQ Crosstalk and ISI*	52	52	32	32	30	30	ps	other than that used for 1066 and 1333 should reduce xtlk to less than 25ps
	DQS Crosstalk and ISI*	23	23	23	23	10	10	ps	1 shielded victim (1010), 2 aggressors (PRBS)
	Vref: Reduction	10	10	10	10	10	10	ps	+/- 30 mV included in DRAM skew; additional = (+/- 10 mV) / (1 V/ns)
	Reff Mismatch	0	0	0	0	0	0	ps	+/-6% accounted for by DRAM spec
	Path Matching (Board)	10	10	10	10	10	10	ps	Within byte lane: 165 ps/in * 0.1 in; Impedance mismatch within DQS to DQ
	Path Matching (Module)	5	5	5	5	5	5	ps	Module routing skew (30% reduction with leveling)
	Input Capacitance Matching	5	5	5	5	5	5	ps	strobe & data shift differently
	ODT Skew (1%)	5	5	5	5	5	5	ps	Estimated
	Total Interconnect	110	110	90	90	75	75	ps	
Receiver	DRAM Skew	215	215	165	165	140	140	ps	tDS, tDH from DRAM spec.derated for faster slew rate and to Vref
		500							
lotal Loss	Total Skew	592	592	464	464	397	397	ps	Trans. + rec. + interconnect skew
M	T' AU I	605	625	400	460	275	275		
мах Еуе	Time Allowed	625	625	469	469	3/5	3/5	ps	
Budget 4L	Timing Margin	33	33	5	5	-22	-22	ps	4 laver board (micronstrip) 40-ohms, 0.135mm trace to trace spacing
				•	•			r~	,
4 to 6 laver	DQ Crosstalk and ISI	9	9	9	9	9	9	ps	decrease using stripline vs microstrip
	DQS Crosstalk and ISI	19	19	19	19	19	19	ps	decrease using stripline vs microstrip
Budget 6L	Timing Margin	61	61	33	33	6	6	ps	6 layer board (stripline), 40-ohms, 0.135mm trace to trace spacing

Micron

PtP Termination

PtP Termination

- The best signaling is achieved when the driver impedance matches the trace impedance
 - Termination impedance matched as well
- For memory down applications 50Ω to 60Ω may be adequate but an ideal system would use a 40Ω impedance
 - DRAM has optional 40 Ω or 48 Ω driver (Ron_{base} is 18 Ω or 34 Ω)
 - Larger ODT values are for generally used during Writes
 - Smaller ODT values are for generally used during standby If single rank then ODT during standby is not needed

Source vs. Source and load termination

- Source Driver's impedance is termination
 - Lower power
 - Larger voltage margin
 - Overshoot / fast slew rates can be a problem in some case
 - Series R can improve results and save power over ODT
- Source & load Driver's impedance and ODT/VTT termination
 - Less sensitive to changes in the value of Ron
 - Less prone to overshooting the supply rails
 - Slower slew rates

Terminating PtP DQ Bus

- Generally use higher impedance DQ driver option
 - Usually slightly less than Zo

icron

- DDR4 requires use of ODT termination due to POD
- DDR2 and DDR3(3L) do not mandate ODT usage, but should be used if possible in most cases
 - Series resistor likely should be added if ODT is not used Line length < 2", one series resistor in middle seems acceptable Line length > 2", one series resistor on each end might work
 - If ODT power is too much, disable ODT and use series resistor Reduces I/O switching current by approx. 40%

Will slow down edge rate a little bit too

Terminating PtP DQ Bus

Source termination

- DDR2 has R_{on} value of 18 Ω ; **Reduced R_{on} value of approx 40\Omega**
- DDR3(3L) has R_{on} value of 34Ω; Reduced R_{on} value of 40Ω
- DDR4 has R_{on} value of 34 Ω ; **Reduced R_{on} value of 48\Omega**
- ODT load termination
 - DDR2 has ODT values of 50Ω , 75Ω and 150Ω
 - DDR3(3L) has ODT values of $20\Omega,\,30\Omega$, 40Ω , $60\Omega,$ and 120Ω
 - DDR4 has ODT values of 34Ω , 40Ω , 48Ω , 60Ω , 80Ω , 120Ω , and 240Ω
 - Larger ODT provides voltage margin and uses less power too large ODT then overshoot occurs and jitter increases

Terminating Pt2/4P Command/Address Bus

- The CMD/ADDR bus is more sensitive than the DQ bus to input slew rate
 - Faster slew rates introduce higher frequency harmonics onto the bus, degrading signal integrity

Faster is not always better when it comes to slew rate

- Controller Ron, lead length, and board impedance determine termination requirements
 - Series resistor probably ok at lower frequencies
 - Series resistor with parallel termination to Vtt should be used at higher frequencies

Larger R = more voltage margin but more jitter; find best trade off via simulations

Micron

Command/Address Topologies

- Tree
 - Excellent performance Until you run out of bandwidth
 - Hardest to route
- Hybrid tree
 - Good performance
 - Easier to route than tree
- Daisy chain
 - Good performance
 - Easiest to route
 - Best bandwidth works at highest rates and largest loading

Pt4P CMD/ADDR Bus Termination

Micron

Multiple Rank Termination

Multiple Rank Termination

- Design guides on web WWW.Micron.com
- Systems are complex and require simulation
- DDR2 modules use Tree topology
- DDR3(3L) modules use Daisy Chain or "fly-by" topology
- DDR4 modules use Daisy Chain or "fly-by" topology
 - Daisy Chain reduces number of stubs and stub length
 - Address/Command/Control VTT termination at end of bus
 - More Address/Command/Control bandwidth
 - Has interconnect skew between clock and strobe at every DRAM on DIMM → must be de-skewed

Backup - Termination DDR3 PtP Examples

PtP Layout and Termination Analysis

- The DQ bus is a single connection from the memory controller to a single DRAM
- DDR3 with Data rate = 1,333MT/s
- Zo for bus transmission lines is 50Ω
- What is the best way to terminate the DQ bus?
 - Consider three choices
 - Source termination
 - Source and load termination on die termination (ODT)
 - Source and series termination

0.16

-0.23 -

0.00

0.30

0.60

0.90

1.20

0.16

-0.23 -

0.00

0.60

0.90

1.20

1.50

0.30

Micron

Micron Confidential

1.50

0.16

-0.23 -

0.00

0.30

0.60

0.90

1.20

1.50

Micron

Micron Confidential ©20

Source/series vs. Source/load termination

- Source/series mitigates the overshoot and slew rate issues with source yet offers power savings
- Source and load (ODT) still provides the largest data eye

Micron

Pt4P CMD/ADDR Bus Termination

- Daisy chain (Ron=48Ω,Rterm=40Ω):
 - Jitter= 7ps, Eye= 1.36ns, Slew= 2V/ns
 Easiest route

Timing skews between clock and data

- **Pt4P** (Ron=34Ω,Rs=0,Rterm=30Ω):
 - Jitter= 8ps, Eye= 1.34ns, Slew= 1.7V/ns
 Harder route

No overshoot or ringing

- **PRt4P** (Ron= 34Ω , Rs= 17Ω , Rterm= 0Ω):
 - Jitter= 14ps, Eye= 1.26ns, Slew= 1.3V/ns

Lower power since no Vtt/Rterm

See backup for various termination comparisons

Micron

Backup – DDR4 Comparison to DDR2 and DDR3(3L)

Features/Options	DDR2	DDR3(3L)	DDR4	
Voltage (core, /IO)	1.8V	1.5V	1.2V	
Low Voltage Std.	No	DDR3L at 1.35V	Probably 1.05V	
Vref Inputs	1 – DQs/CMD/ADDR	2 - DQs and CMD/ADDR	1 -CMD/ADDR	
Densities Defined	256Mb-4Gb	512Mb-8Gb	2Gb-16Gb	
Internal Banks	$4 \rightarrow 8$	8	16	
Bank Groups (BG)	0	0	4	
Page Size - x4/x8/16	1KB/1KB/2KB	1KB/1KB/2KB	512B/1KB/2KB	
^t CK - DLL enabled	125MHz to 400MHz	300MHz to 1066MHz	625MHz to 1.6GHz	
tCK - DLL disabled	Optional, $\leq 125MHz$	Optional, $\leq 125 MHz$	Feature, $\leq 125MHz$	
Data Rate – Mb/s	400/533/667/800 plus1066	800 /1066/1333/1600 plus1866, 2133	1600/1866/2133 /2400/ 2667/3200	
Prefetch	4-bits (2 clocks)	8-bits (4 clocks)	8-bits (4 clocks)	
Burst length	BL4, BL8	BC4 , BL8	BC4 , BL8	
Burst type	(1) Fixed	(1) Fixed, (2) OTF	(1) Fixed, (2) OTF	
	6/6/2013	Micron Confidential	©2012 Micron Technology, Inc. 54	

Features/Options	DDR2	DDR3(3L)	DDR4		
Access (CL, ^t RCD, ^t RP)	14ns+/-	14ns+/-	14ns+/-		
Additive Latency	0, 1,2,3,4	0, CL-1, CL-2	0, CL-1, CL-2		
READ Latency (RL)	AL + CL	AL + CL	AL + CL		
WRITE Latency	RL-1	AL + CWL	AL + CWL		
Data Strobes	Single or Differential	Differential Only	Differential Only		
Driver / ODT Calibration	none	240 Ω Ext. Resistor	240 Ω Ext Resistor		
DQ Driver (STD)	18Ω (13Ω to 24Ω)	34Ω (31Ω to 38Ω)	34Ω (31Ω to 38Ω)		
DQ Driver (ALT)	40 Ω (21 Ω to 61 Ω)	40 Ω (36 Ω to 44 Ω)	40 Ω (36 Ω to 44 Ω)		
DQ Bus Termination	ODT	ODT	ODT		
DQ Bus	SSTL18	SSTL15	POD12		
Rtt Values	150, 75, 50Ω	120, 60, 40, 30, 20Ω	240, 120, 80, 60, 48, 40, 34Ω		
Rtt disabled at READs	Νο	No	Yes		
ODT Modes	Nominal, Dynamic	Nominal, Dynamic	Nominal, Dynamic, Park		

6/6/2013

Micron

Micron Confidential ©2012 Micron Technology, Inc. 55

Features/Options	DDR2	DDR2 DDR3(3L)	
ODT Input Control	Required Driven	Required Driven	Not Required Driven
MultiPurpose Register	None	1 Defined, 3 RFU	3 Defined, 1 RFU
Write Leveling	None	DQS captures CK	DQS captures CK
RESET#	None	Dedicated input	Dedicated input
VPP Supply	none	none	2.5V
VREFDQ Calibration	none	none	Supported/Required
Bank Group	none	none	four
Low-power Auto SR	None	None (ASR opt.)	supported
Temperature Controlled Refresh (TCR)	none	none	supported
Fine Granularity Refresh	none	none	supported
CMD/ADDR Latency	none	none	supported
Data Bus Write CRC	none	none	supported
Data Bus Inversion (DBI)	none	none	supported
	6/6/2013	Micron Confidential	©2012 Micron Technology, Inc. 56

Features/Options	DDR2	DDR3(3L)	DDR4	
Per DRAM Addressability	none	none	supported	
C/A Parity	none	none	supported	
Gear-Down Mode	none	none	supported	
Connectivity Test Mode	none	none	supported	
Max. Power Savings	none	none	supported	
Program READ Preamble	none	none	supported	
Program WRITE Preamble	none	none	supported	
READ Preamble Training	none	none	supported	
Self Refresh Abort	none	none	supported	
Command Input (ACT_n)	none	none	supported	
Pin-out/Package (FBGA)	60-ball; x4, x8 84-ball; x16	78-ball; x4, x8 96-ball; x16	78-ball; x4, x8 96-ball; x16	
UDIMM, RDIMM	240-pin	240-pin	288-pin	
SODIMM	200-pin	204-pin	256-pin	
	6/6/2013	Micron Confidential	©2012 Micron Technology, Inc. 57	

Backup – DDR4 Features Select New Features

DQ Output Driver

DDR4 vs DDR3(3L)/2 Bank Architecture

DDRx	MT/s (min)	MT/s (max)	^t CK (max)	^t CK (min)	Preftech	Internal Access (min)
2	400	800	5ns	2.5ns	4n	5ns
3	800	1600	2.5ns	1.25ns	8n	5ns
-4	1600	3200	1.25ns	0.625ns	16n	5ns
4	1600	3200	1.25ns	0.625ns	8n	2.5ns

^tCCD_S @ 4CK = 2.5ns ^tCCD_L @ 5CK = 5.3ns

MPR Operation

- Multi-Purpose Register is a useful tool that can be used for various ways
 - Training
 - DRAM controller receiver training
 - DRAM controller DQS to DQ phase training
 - Clock to address phase training
 - Debug

MPR provides a known response when rest is uncertain

RAS Support

Logging of C/A parity and CRC error information

Mode Register Confirmation

MPR Registers

	Description		MPR Bit Write Location [7:0]							
Logical Page MR3[1:0]		MPR Location [BA1:BA0]	7	6	5	4	3	2	1	0
			Read Burst Order (serial mode)							
			UI0	UI1	UI2	UI3	UI4	UI5	UI6	UI7
		00 = MPR0	0	1	0	1	0	1	0	1
00 - Page 0	Training	01 = MPR1	0	0	1	1	0	0	1	1
00 – Page 0	Patterns	10 = MPR2	0	0	0	0	1	1	1	1
		11 = MPR3	0	0	0	0	0	0	0	0
		00 = MPR0	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]
	C/A Parity Error Log	01 = MPR1	A[15]/ CAS_n	A[14]/ WE_n	A[13]	A[12]	A[11]	A[10]	A[9]	A[8]
01 = Page 1		10 = MPR2	PAR	ACT_n	BG[1]	BG[0]	BA[1]	BA[0]	A[17]	A[16]/ RAS_n
		11 = MPR3	CRC Error Status	C/A Parity Error Status	C/A Parity Latency C[2		C[2]	C[1]	C[0]	
10 = Page 2	MRS Readout	00 = MPR0	PPR	RFU	Rtt_WRTemp SensorCRCSettingStatusWriteEnable		Rtt_ Set	_WR ting		
		01 = MPR1	VrefDQ Training Range	VrefDQ Training VrefDQ Training Value Range						Gear- down Enable
		10 = MPR2		CAS L	atency		RFU	CAS	Write Late	ency
		11 = MPR3	Rtt_Nom Setting Rtt_Park Setting Driver 1			Driver In	npedance			
		00 = MPR0	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU
11 - Page 3	RFU	01 = MPR1	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU
II – Paye S		10 = MPR2	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU
		11 = MPR3	RFU	RFU	RFU	RFU	RFU	RFU	RFU	RFU

Micron

DDR4 Write CRC Error

DDR4 Writes - CRC Flow

Micron

C/A Parity

 C/A Parity provides parity checking of command and address buses

C/A Parity Flow

DDR3L vs DDR4 Power (with VPP)

- DDR3L vs DDR4 IDD specs
 - Both 30nm 4Gb x8
 - **1866**
 - DDR4 power includes both IDD and IPP current

		Voltage	current	Power	PW DDR4
		V	mA	mW	reduction
I DD0	DDR3 VDD	1.35	62	83.7	34%
	DDR4 VDD	1.2	40	48.0	
	DDR4 VPP	2.5	3	7.5	
I DD1	DDR3 VDD	1.35	70	94.5	29%
	DDR4 VDD	1.2	50	60.0	
	DDR4 VPP	2.5	3	7.5	
I DD2N	DDR3 VDD	1.35	35	47.3	14%
	DDR4 VDD	1.2	30	36.0	
	DDR4 VPP	2.5	1.8	4.5	
I DD2P	DDR3 VDD	1.35	37	50.0	50%
	DDR4 VDD	1.2	17	20.4	
	DDR4 VPP	2.5	1.8	4.5	
I DD2Q	DDR3 VDD	1.35	35	47.3	30%
	DDR4 VDD	1.2	24	28.8	
	DDR4 VPP	2.5	1.8	4.5	
I DD3N	DDR3 VDD	1.35	45	60.8	20%
	DDR4 VDD	1.2	37	44.4	
	DDR4 VPP	2.5	1.8	4.5	
I DD3P	DDR3 VDD	1.35	41	55.4	38%
	DDR4 VDD	1.2	25	30.0	
	DDR4 VPP	2.5	1.8	4.5	
I DD4R	DDR3 VDD	1.35	174	234.9	34%
	DDR4 VDD	1.2	125	150.0	
	DDR4 VPP	2.5	1.8	4.5	
I DD4W	DDR3 VDD	1.35	141	190.4	22%
	DDR4 VDD	1.2	120	144.0	
	DDR4 VPP	2.5	1.8	4.5	
I DD5B	DDR3 VDD	1.35	162	218.7	22%
	DDR4 VDD	1.2	110	132.0	
	DDR4 VPP	2.5	15	37.5	
I DD7	DDR3 VDD	1.35	251	338.9	27%
	DDR4 VDD	1.2	175	210.0	
	DDR4 VPP	2.5	15	37.5	

Backup - Clock Jitter Highlight of JEDEC definitions

Clock Jitter: ^tCKavg

- ^tCKavg is calculated as the average clock period across any consecutive 200 clock cycle window
 - Sometimes referred to as the "ideal" or "nominal" clock
 - Clock variations should fit within a random Gaussian Distribution
 - Does not include SSC effects

Clock Jitter: ^tJITper

- ^tJITper is *Clock Period Jitter;* and is the deviation of any single clock period from ^tCKavg
- ^tJITper_(min/max) is the largest deviation of any single clock period from ^tCKavg
 - This is an absolute limit, not an RMS or Sigma value
 - Micron Design Line article provides guidance on dealing with RMS clock jitter values, or jitter values that exceed the absolute clock period limit - TN-04-56

Clock Jitter: ^tERRnper

- ^tERR(nper) is defined as the cumulative error across consecutive n cycles relative to n
 ^tCKavgs
 - A period of ^tCKavg * n (number of clocks) can not be deviated from by more than ^tERR(nper) (+ or -)

Negative is primary concern for a DRAM

 Clock periods greater than ^tCKavg (slower) will offset clock periods less than ^tCKavg (faster) when determining cumulative error

Clock Jitter: ^tERRnper

- ^tERR(nper) is defined for different sets of cumulative jitter error parameters
 - n is for 2, 3, 4, 5, 6-10, 11-50 clocks for DDR2
 - n is for 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; 13-50 clocks = $(1+0.68Ln[n]) * tJITper_{min}$ for DDR3/4
- Since jitter is a Gaussian distribution, the cumulative error, either positive or negative, is not a summation of the absolute values (n-clocks times ^tJITper_{min} or ^tJITper_{max})

SSC (Spread Spectrum Clocking)

- Modulation frequency of 20 to 60KHz allowed, with up to 1% ^tCKavg deviation
 - If the DLL is locked prior to SSC being enabled, then ^tCKavg deviation can be up to 2% ^tCKavg

